SYRIAN PRIVATE UNIVERSITY

Electric Circuits I

 Dr. Eng. Hassan M. AfmadHassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter 7 First-Order Circuits

7.1 The Source-Free RC Circuit

7.2 The Source-Free RL Circuit
7.3 Unit-step Function
7.4 Step Response of an RC Circuit
7.5 Step Response of an RL Circuit

Introduction

- A simple circuit comprising a resistor and capacitor is called RC circuit;
- A simple circuit comprising a resistor and an inductor is called $\boldsymbol{R L}$ circuit.
- These types of circuits find continual applications in electronics, communications, and control systems.
- We carry out the analysis of $R C$ and $R L$ circuits by applying Kirchhoff's laws:
- Apply Kirchhoff's laws to purely resistive circuits results in algebraic equations;
- Apply the laws to $R C$ and $R L$ circuits produces differential equations.
- The differential equations resulting from analyzing $R C$ and $R L$ circuits are of the first order
- Hence, the circuits are collectively known as first-order circuits.
\checkmark A first-order circuit is characterized by a first-order differential equation.

7.1 The Source-Free $\boldsymbol{R C}$ Circuit

- A source-free $\boldsymbol{R} \boldsymbol{C}$ circuit occurs when its dc source is suddenly disconnected.
- The energy already stored in the capacitor is released to the resistors.
- Applying KCL at the top node gives:

$$
i_{C}+i_{R}=0 \Leftrightarrow C \frac{d v}{d t}+\frac{v}{R}=0 \quad \text { or } \frac{d v}{d t}+\frac{v}{R C}=0
$$

- This is a first-order differential equation.

The natural response of $\boldsymbol{R C}$ Circuit

- Since the capacitor is initially charged, we can assume that at time $t=0$, the initial voltage is $v(0)=V_{0}$, with the corresponding value of the energy stored as

$$
w(0)=\frac{1}{2} C V_{0}^{2}
$$

- The first-order differential equation can be rewrite as

$$
\frac{d v}{d t}+\frac{v}{R C}=0 \Leftrightarrow \frac{d v}{\nu}=-\frac{1}{R C} d t
$$

- Integrating both sides, we get $\ln V=-\frac{t}{R C}+\ln A \Leftrightarrow \ln \frac{v}{A}=-\frac{t}{R C}$ where $\ln A$ is the integration constant.
- Taking powers of e produces: $\quad v(t)=A e^{-t / R C}$
- From the initial conditions $v(0)=A=V_{0}$. Hence, $v(t)=V_{0} e^{-t / R C}$
- This Eq is called the natural response of the circuit.
- The natural response of a circuit refers to the behavior (in terms of voltages and currents) of the circuit itself, with no external sources of excitation.
- The natural response is illustrated graphically in Fig. with time constant $\tau=R C$.
- The time constant τ of a circuit is the time
 required for the response to decay to a factor of $1 / e$ or 36.8 percent of its initial value.
- At $t=\tau \rightarrow \quad V_{0} e^{-t / R C}=V_{0} e^{-1}=0.368 V_{0}$
- In terms of the time constant, Eq. for The natural response can be written as $v(t)=V_{0} e^{-t / \tau}$ or $\frac{v(t)}{V_{0}}=e^{-t / \tau}$
- Natural response as $\frac{v(t)}{V_{0}}=e^{-t / \tau}$

- v decays faster for small τ and slower for large τ.

Current, Power and Energy of RC Circuit

- The current $i_{R}(t)$ is defined as

$$
i_{R}(t)=\frac{v(t)}{R}=\frac{V_{0}}{R} e^{-t / \tau}
$$

- The power dissipated in the resistor is

$$
p(t)=v i_{R}=\frac{V_{0}^{2}}{R} e^{-2 t / \tau}
$$

- The energy absorbed by the resistor up to time t is

$$
w_{R}(t)=\int_{0}^{t} p(\lambda) d \lambda=\int_{0}^{t} \frac{V_{0}^{2}}{R} e^{-2 \lambda / \tau} d \lambda=-\left.\frac{\tau V_{0}^{2}}{2 R} e^{-2 \lambda / \tau}\right|_{0} ^{t}=\frac{1}{2} C V_{0}^{2}\left(1-e^{-2 t / \tau}\right), \quad \tau=R C
$$

- The initial energy stored in the capacitor is

$$
w_{C}(0)=\frac{1}{2} C V_{0}^{2}
$$

The Key to Working with a Source-Free RC Circuit Is Finding:

1. The initial voltage $v(0)=V_{0}$ across the capacitor.
2. The time constant τ.

Example 7.1

In Fig., let $v_{C}(0)=15 \mathrm{~V}$. Find v_{C}, v_{x}, and i_{x} for $t>0$.

Solution

First, conform the given circuit to the standard RC circuit.
The $8-\Omega$ and $12-\Omega$ resistors in series $=20 \Omega$.

$$
R_{\mathrm{eq}}=\frac{20 \times 5}{20+5}=4 \Omega
$$

Hence, the equivalent circuit is as shown in Fig.
The time constant is $\quad \tau=R_{\text {eq }} C=4(0.1)=0.4 \mathrm{~s}$
Thus, $\quad v=v(0) e^{-t / \tau}=15 e^{-t / 0.4} \mathrm{~V} \Rightarrow v_{C}=v=15 e^{-2.5 t} \mathrm{~V}$
Use VDR to get: $\quad v_{x}=\frac{12}{12+8} v=0.6\left(15 e^{-2.5 t}\right)=9 e^{-2.5 t} \mathrm{~V}$

Finally,

$$
i_{x}=\frac{v_{x}}{12}=0.75 e^{-2.5 t} \mathrm{~A}
$$

Example 7.2. The switch in the circuit in Fig. has been closed for a long time, and it is opened at $\boldsymbol{t}=\mathbf{0}$. Find $v(t)$ for $t \geq 0$. Calculate the initialenergy stored in the capacitor.

Solution

For $t<\mathbf{0}$, the switch is closed; the capacitor is an open circuit to dc, Fig.(a). Using VDR

$$
v_{C}(t)=\frac{9}{9+3}(20)=15 \mathrm{~V}, t<0
$$

Since the voltage across a capacitor cannot change instantaneously, the voltage across the capacitor at $t=0^{-}$ is the same at $t=0$, or $\quad v_{C}(0)=V_{0}=15 \mathrm{~V}$
For $t>0$, the switch is opened, and we have the RC circuit shown in Fig. (b).

$$
R_{\mathrm{eq}}=1+9=10 \Omega \Rightarrow \tau=R_{\mathrm{eq}} C=10 \times 20 \times 10^{-3}=0.2 \mathrm{~s}
$$

Thus, the voltage across the capacitor for $t \geq 0$ is

$$
v(\mathrm{t})=v(0) e^{-t / \tau}=15 e^{-t / 0.2} \mathrm{~V} \text { or } v(\mathrm{t})=15 e^{-5 t} \mathrm{~V}
$$

The initial energy stored in the capacitor is

(b)

$$
w_{C}(0)=\frac{1}{2} C V_{0}^{2}(0)=\frac{1}{2} \times 20 \times 10^{-3} \times(15)^{2}=2.25 \mathrm{~J}
$$

7.2 The Source-Free RL Circuit

- A first-order $\mathbf{R L}$ circuit consists of a inductor L (or its equivalent) and a resistor (or its equivalent).
- The circuit response is assumed to be the current $i(t)$ through the inductor.
- At $t=0$, we assume that the inductor has an initial current I_{0}, or

$$
i(0)=I_{0}
$$

with the corresponding energy stored in the inductor as

$$
w(0)=\frac{1}{2} L I_{0}^{2}
$$

- Applying KVL around the loop in Fig.

$$
\begin{aligned}
& v_{L}+v_{R}=0 ; \quad v_{L}=L d i / d t, \quad v_{R}=i R \\
& \Rightarrow L \frac{d i}{d t}+R i=0 \Rightarrow \frac{d i}{i}=-\frac{R}{L} d t \Rightarrow \int_{I_{0}}^{i(t)} \frac{d i}{i}=-\int_{0}^{t} \frac{R}{L} d t \\
& \Rightarrow i(t)=I_{0} e^{-R t / L}
\end{aligned}
$$

- The time constant for the $R L$ circuit is

$$
\tau=\frac{L}{R} \text { (second) }
$$

- The current through the inductor is,

$$
i(t)=I_{0} e^{-t / \tau}
$$

- The current response of the RL circuit is as in Fig.
- The voltage across the resistor is

$$
v_{R}(t)=i R=I_{0} R e^{-t / \tau}
$$

- The power dissipated in the resistor is

$$
p=v_{R} i=I_{0}^{2} R e^{-2 t / \tau}
$$

- The energy absorbed by the resistor is

$$
w_{R}(t)=\frac{1}{2} L I_{0}^{2}\left(1-e^{-2 t / \tau}\right), \quad \tau=L / R
$$

- Note that as $t \rightarrow \infty, w_{R}(\infty) \rightarrow \frac{1}{2} L I_{0}^{2}$, which is the same as $w_{L}(0)$, the initial energy stored in the inductor.

The Key to Working with a Source-Free RL Circuit is to Find:
The initial current $i(0)=I_{0}$ through the inductor.
The time constant τ of the circuit.

Example 7.3. The switch in the circuit in Fig. has been closed for a long time, and it is opened at $\boldsymbol{t}=\mathbf{0}$. Find $i(t)$ for $t>0$.

Solution

For $t<0$, the switch is closed; and the inductor acts as a short circuit to dc. The $16-\Omega$ resistor is short-circuited; the resulting circuit is shown in Fig.(a).
The $4-\Omega$ and $12-\Omega$ resistors in parallel: $\quad 4 \| 12=3 \Omega$
 The $2-\Omega$ and $3-\Omega$ resistors in series: $2+3=5 \Omega$.
Hence, $\quad i_{1}=\frac{40}{5}=8 \mathrm{~A}$
Using CDR, we get $i(\mathrm{t})=\frac{12}{12+4} i_{1}=6 \mathrm{~A}, \quad 1<0$
Since the current through an inductor cannot change instantaneously, $\quad i(0)=i\left(0^{-}\right)=6 \mathrm{~A}$
When $t>0$, the switch is open and the voltage source is disconnected. We now have the source-free RL circuit in Fig. (b). $R_{\text {eq }}=(12+4) \| 16=8 \Omega$
The time constant is $\tau=\frac{L}{R_{\text {eq }}}=\frac{2}{8}=\frac{1}{4} \mathrm{~s}$
Thus,

(b)

$$
i(t)=i(0) e^{-t / \tau}=6 e^{-4 t} \mathrm{~A}
$$

Example 7.4. In the circuit shown in Fig., find i_{0}, v_{o}, and i for all time, assuming that the switch was open for a long time. Plot of i and i

Solution

For $t<0$, the switch is open. Since the inductor acts like a short circuit to dc, the $6-\Omega$ resistor is shortcircuited, Fig. (a). Hence, $i_{0}=0$, and

$i(t)=\frac{10}{2+3}=2 \mathrm{~A}, t<0 \Rightarrow v_{o}(t)=3 i(t)=6 \mathrm{~V}, t<0 \Rightarrow i(0)=2 \mathrm{~A}$
For $t>0$, the switch is closed, so that the voltage source is short-circuited. We now have a source-free RL circuit as shown in Fig. (b).
At the inductor terminals: $R_{\text {eq }}=R_{\text {Th }}=3 \| 6=2 \Omega$

(a)

The time constant is

$$
\tau=\frac{L}{R_{\mathrm{Th}}}=\frac{2}{2}=1 \mathrm{~s} \Rightarrow i(t)=i(0) e^{-t / \tau}=2 e^{-t} \mathrm{~A}, \quad t>0
$$

(b)

Because the inductor is in parallel with the $6-$ and $3-\Omega$ resistors,

$$
\begin{aligned}
& v_{o}(t)=-\mathrm{v}_{L}=-L \frac{d i}{d t}=-2\left(-2 \mathrm{e}^{-t}\right)=4 \mathrm{e}^{-t} \mathrm{~V}, t>0 \\
& i_{o}(t)=\frac{v_{L}}{6}=\frac{-v_{o}}{6}=-\frac{4 \mathrm{e}^{-t}}{6}=-\frac{2}{3} \mathrm{e}^{-t} \mathrm{~A}, \quad t>0
\end{aligned}
$$

(b)

Thus, for all time,

$$
\begin{aligned}
& i_{o}(t)=\left\{\begin{array}{ll}
0 \mathrm{~A}, & t<0 \\
-\frac{2}{3} \mathrm{e}^{-t} & \mathrm{~A}, \\
& t>0
\end{array}, \quad v_{o}(t)= \begin{cases}6 \mathrm{~V}, & t<0 \\
4 \mathrm{e}^{-t} \mathrm{y}, & t<0\end{cases} \right. \\
& i(t)= \begin{cases}2 \mathrm{~A}, & t<0 \\
2 \mathrm{e}^{-t} \mathrm{~A}, & t \geq 0\end{cases}
\end{aligned}
$$

7.3 Unit-Step Function

- The unit step function $\boldsymbol{u}(t)$ is 0 for negative values of t and 1 for positive values of t.

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>0\end{cases}
$$

- At $t=0$, where it changes abruptly from 0 to 1 .

- At $t=t_{0}\left(\right.$ where $\left.t_{0}>0\right)$:

$$
u\left(t-t_{0}\right)=\left\{\begin{array} { l }
{ 0 , t < t _ { 0 } } \\
{ 1 , t > t _ { 0 } }
\end{array} \quad \left(u(t) \text { is delayed by } t_{0}\right.\right. \text { seconds) }
$$

- At $t=-t_{0}$

$$
u\left(t+t_{0}\right)=\left\{\begin{array}{l}
0, t<-t_{0} \\
1, t>-t_{0}
\end{array} \quad\left(u(t) \text { is advanced by } t_{0} \text { seconds }\right)\right.
$$

- The step function is used to represent an abrupt change in voltage or current, like the changes that occur in the circuits of control systems and digital computers.
- For example, the voltage

$$
v(t)= \begin{cases}0, & t<t_{0} \\ V_{0}, & t>t_{0}\end{cases}
$$

may be expressed in terms of the unit step function as

$$
v(t)=V_{0} u\left(t-t_{0}\right)
$$

- at $t_{0}=0$, then $v(t)$ is simply the step voltage $V_{0} u(t)$.
- (a) Voltage source of $\boldsymbol{V}_{0} \boldsymbol{u}(\boldsymbol{t})$,
- (b) its equivalent circuit.

(a)

(b)
- For $t<\mathbf{0} \rightarrow$ the terminals $a-b$ are short-circuited $(v=0)$,
- For $\boldsymbol{t}>\mathbf{0} \rightarrow$ at the terminals $a-b$ appear $v=V_{0}$,
- Similarly, a current source of $I_{0} u(t)$ is shown in Fig. (a), while its equivalent circuit is in Fig. (b).

- For $\boldsymbol{t}<\mathbf{0} \rightarrow$ there is an open circuit $(i=0)$,
- For $\boldsymbol{t}>\mathbf{0} \rightarrow$ flow current $i=I_{0}$,

7.4 The Step-Response of a RC Circuit

- The step response of a circuit is its behavior when the excitation (إثارة =تحريض) is the step function, which may be a voltage or a current source.
- Initial condition: $v\left(0^{-}\right)=v\left(0^{+}\right)=V_{0}$ where $v\left(0^{-}\right)$is the voltage across the capacitor just before switching, $v\left(0^{+}\right)$is its voltage immediately after switching.
- Applying KCL:

$$
C \frac{d v}{d t}+\frac{v-V_{s} u(t)}{R}=0 \Leftrightarrow \frac{d v}{d t}+\frac{v}{R C}=\frac{V_{s}}{R C} u(t)
$$

(a)

(b)

$$
\nu(t)=V_{s}+\left(V_{0}-V_{s}\right) e^{-t / \tau}, \quad \tau=R C, \quad t>0
$$

- The complete response (or total response) of a $\boldsymbol{R} \boldsymbol{C}$ circuit to a sudden application of a dc voltage source
with initially charged capacitor (with V_{0}).

$$
v(t)= \begin{cases}V_{0}, & t<0 \\ V_{s}+\left(V_{0}-V_{s}\right) e^{-t / \tau}, & t>0\end{cases}
$$

- If the capacitor is uncharged initially $\left(V_{0}=0\right)$.

$$
\begin{aligned}
& v(t)=\left\{\begin{array}{ll}
0, & t<0 \\
V_{s}\left(1-e^{-t / \tau}\right), & t>0
\end{array} \Leftrightarrow v(t)=V_{(}\left(1-e^{-t / \tau}\right) u(t)\right. \\
& \Rightarrow i(t)=C \frac{d v}{d t}=\frac{C}{\tau} V_{s} e^{-t / \tau}, \quad \tau=R C, t \geqslant 0 \\
& \Rightarrow i(t)=\frac{V_{s}}{R} e^{-t / \tau} u(t)
\end{aligned}
$$

- The complete response can be looked by tow ways:
- One way:

Complete response $=\underbrace{\text { natural response }}\left(v_{n}\right)+\underbrace{\text { forced response }}\left(v_{f}\right)$ stored energy independent source

$$
v=v_{n}+v_{f} ; \quad v_{n}=V_{0} e^{-t / \tau}, \quad \hat{v}_{f}=V_{s}\left(1-e^{-t / \tau}\right)
$$

- Another way:

$$
\begin{gathered}
\text { Complete response }=\underbrace{\text { transient response }}_{\text {temperary part }}\left(v_{t}\right)+\underbrace{\text { steady-state response }}_{\text {permanent part }}\left(v_{s s}\right) \\
v=v_{t}+v_{s s} ; \quad v_{t}=\left(V_{0}-\sqrt[V]{s}\right) e^{t / \tau}, v_{s s}=V_{s}
\end{gathered}
$$

- The transient response is the circuit's temporary response (الاستجابة المؤقتة) that will die out (تنقرض = تموت) with time
- The steady-state response is the behavior of the circuit a long time after an external excitation is applied.
- Finally, the complete response can be written as:

$$
v(t)=v(\infty)+[v(0)-v(\infty)] e^{-t / \tau}
$$

- where $v(0)$ is the initial voltage at $t=0^{+}$and $v(\infty)$ is the final or steady-state value.
9/23/2018

Three steps to find out the step response of an $R C$ circuit:

1. The initial capacitor voltage $v(0)$.
2. The final capacitor voltage $v(\infty)$.
3. The time constant τ.

We obtain item 1 from the given circuit for $t<0$ and items 2 and 3 from the circuit for $t>0$

Note that if the switch changes position at time $t=t_{0}$ instead of at $t=0$, there is a time delay in the response so that the complete response becomes:

$$
v(t)=v(\infty)+\left[v\left(t_{0}\right)-v(\infty)\right] e^{-\left(t-t_{0}\right) / t}
$$

where $\mathrm{v}\left(\mathrm{t}_{0}\right)$ is the initial value at $t=t_{0}^{+}$

Example 7.5. The switch in Fig. has been in position A for a long time. At $t=0$, the switch moves to B. Determine $v(t)$ for $t>0$ and calculate its value at $t=1$ and 4 s .

Solution

For $\boldsymbol{t}<\mathbf{0}$, the switch is at position \boldsymbol{A}. The capacitor acts like an open circuit to dc, but \boldsymbol{v} is the same as the voltage across the $5-\mathrm{k} \Omega$ resistor.
Hence, the voltage across the capacitor just before $t=0$ is obtained by voltage division as

$$
v\left(0^{-}\right)=\frac{5}{5+3}(24)=15 \mathrm{~V}
$$

The capacitor voltage cannot change instantaneously: $v(0)=v\left(0^{-}\right)=v\left(0^{+}\right)=15 \mathrm{~V}$ For $\boldsymbol{t}>\mathbf{0}$, the switch is in position \boldsymbol{B}. The Thevenin resistance connected to the capacitor is $R_{\mathrm{Th}}=4 \mathrm{k} \Omega$, and the time constant is $\tau=R_{\mathrm{Th}} C=4 \times 10^{3} \times 0.5 \times 10^{-3}=2 \mathrm{~s}$ Since the capacitor acts like an open circuit to dc at steady state, $v(\infty)=30 \mathrm{~V}$. Thus,

$$
\begin{aligned}
& v(t)=v(\infty)+[v(0)-v(\infty)] e^{-t / \tau}=30+(15-30) \mathrm{e}^{-t / 2}=\left(30-15 \mathrm{e}^{-0.5 t}\right) \mathrm{V} \\
& t=1 \Rightarrow v(1)=30-15 \mathrm{e}^{-0.5}=20.9 \mathrm{~V} \\
& t=4 \Rightarrow v(4)=30-15 \mathrm{e}^{-2}=27.97 \mathrm{~V}
\end{aligned}
$$

Example 7.6. In Fig., the switch has been closed for a long time and is opened at $t=0$. Find i and v for all time.

Solution

At $t=\mathbf{0}$, The current i can be discontinuous (منقط), while the capacitor voltage v cannot. Hence, it is always better to find v and then obtain i from v.
The unit step function is $30 u(t)= \begin{cases}0, & t<0 \\ 30, & t>0\end{cases}$ For $t<\mathbf{0}$,

1) the switch is closed and $30 u(t)=0$, so that the $30 u(t)$ voltage source is replaced by a short circuit.
2) Since the switch has been closed for a long time, the capacitor voltage has reached steady state and the capacitor acts like an open circuit, Fig. (a).

(a)

From this circuit we obtain $\quad v=10 \mathrm{~V} \Rightarrow i=-\frac{v}{10}=-1 \mathrm{~A}$
Since the capacitor voltage cannot change instantaneously, $\quad v(0)=v\left(0^{-}\right)=10 \mathrm{~V}$

For $t>0$,

1) the switch is opened and the $10-\mathrm{V}$ voltage source is disconnected from the circuit.
2) The $30 u(t)$ voltage source is now operative, Fig.(b).
3) After a long time, the circuit reaches steady state and the capacitor acts like an open circuit again.
We obtain $v(\infty)$ by using VDR, writing

$$
v(\infty)=\frac{20}{20+10}(30)=20 \mathrm{~V}
$$

The Thevenin resistance at the capacitor terminals is

$$
R_{\mathrm{Th}}=10 \| 20=\frac{20}{3} \Omega
$$

(b)

The time constant is

$$
\tau=R_{\mathrm{Th}} C=\frac{20}{3} \times \frac{1}{4}=\frac{5}{3} \mathrm{~s}
$$

Thus, $\quad v(t)=v(\infty)+[v(0)-v(\infty)] e^{-t / \tau}=20+(10-20) \mathrm{e}^{-(3 / 5) t}=\left(20-10 \mathrm{e}^{-0.6 t}\right) \mathrm{V}$

To obtain i, from Fig. (b):

$$
\begin{aligned}
i & =\frac{v}{20}+C \frac{d v}{d t}=\frac{20-10 \mathrm{e}^{-0.6 t}}{20}+\frac{1}{4} \cdot \frac{d\left(20-10 \mathrm{e}^{-0.6 t}\right)}{d t} \\
& =1-0.5 e^{-0.6 t}+0.25(-0.6)(-10) e^{-0.6 t}=\left(1+e^{-0.6 t}\right) \mathrm{A}
\end{aligned}
$$

(Alternately, $v+10 i=30 \mathrm{~V}$)

Finally,

$$
v=\left\{\begin{array}{ll}
10 \mathrm{~V}, & t<0 \\
\left(20-10 e^{-0.6 t}\right) \mathrm{V}, & t \geq 0
\end{array} ; \quad i= \begin{cases}-1 \mathrm{~A}, & t<0 \\
\left(1+e^{-0.6 t}\right) \mathrm{A}, & t \geq 0\end{cases}\right.
$$

7.5 The Step-response of a RL Circuit

- The step response of a circuit is its behavior when the excitation is the step function, which may be a voltage or a current source.
- The circuit response is the inductor current $i=$ =???.
- The response is the sum of the transient response and the steady-state response:

$$
i=i_{t}+i_{s s}
$$

- The transient response is always a decaying exponential:

$$
i_{t}=A e^{-t / \tau}, \quad \tau=\frac{L}{R}, A-\text { constant }
$$

- The steady-state response is the value of the current a long time after the switch is closed.
- Thus,

$$
i_{s s}=\frac{V_{s}}{R}
$$

(b)

- Since the current through the inductor cannot change instantaneously,
- at $\boldsymbol{t}=\mathbf{0}$, the initial current is $\quad i\left(0^{+}\right)=i\left(0^{-}\right)=I_{0}$

$$
i=A e^{-t / \tau}+\left.\frac{V_{s}}{R} \Rightarrow I_{0}\right|_{t=0}=A+\frac{V_{s}}{R} \Rightarrow A=I_{0}-\frac{V_{s}}{R}
$$

$$
\text { at } t=\infty \text {, the Final inductor current is } i(\infty)=\frac{V_{s}}{R}
$$

- This is the complete response of the $R L$ circuit

$$
i(t)=\frac{V_{s}}{R}+\left(I_{0}-\frac{V_{s}}{R}\right) e^{-t / \tau} \Leftrightarrow i(t)=i(\infty)+[i(0)-i(\infty)] e^{-t / \tau}
$$

Three steps to find out the step response of

 an $R L$ circuit:1. The initial inductor current $i(0)$ at $t=0$.
2. The final inductor current $i(\infty)$.
3. The time constant τ.

- at time $t=t_{0}: \quad i(t)=i(\infty)+\left[i\left(t_{0}\right)-i(\infty)\right] e^{-\left(t-t_{0}\right) / \tau}$
- If $I_{0}=0$, then, the step response of the $R L$ circuit with no initial inductor current.

$$
i(t)=\left\{\begin{array}{ll}
0, & t<0 \\
\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right), & t>0
\end{array} \Leftrightarrow i(t)=\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right) u(t)\right.
$$

- The voltage across the inductor is

$$
v(t)=L \frac{d i}{d t}=L \frac{d}{d t}\left(\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right)\right)=V_{s} \frac{1}{\tau} R e^{-t / \tau}
$$

- With $\tau=\frac{L}{R} \rightarrow v(t)=V_{s} e^{-t / \tau} u(t)$

(a)

(b)

Example 7.7. Find $i(t)$ in the circuit of Fig. $t>0$. Assume that the switch has been closed for a long time.

Solution

1) When $\boldsymbol{t}<\mathbf{0}$, the $3-\Omega$ resistor is short-circuited, and the inductor acts like a short circuit, so that

$$
\left.i\left(0^{-}\right)\right|_{t=0^{-}}=\frac{10}{2}=5 \mathrm{~A}
$$

Because the inductor current cannot change
 instantaneously, $i(0)=i\left(0^{-}\right)=i\left(0^{+}\right)=5 \mathrm{~A}$
2) When $\boldsymbol{t}>\mathbf{0}$, the switch is open. The $2-$ and $3-\Omega$ resistors are in series, so that

$$
i(\infty)=\frac{10}{2+3}=2 \mathrm{~A}
$$

The Thevenin resistance across the inductor terminals is $R_{\mathrm{Th}}=2+3=5 \Omega$
3) The time constant, 1

$$
\tau=\frac{L}{R_{\mathrm{Th}}}=\frac{\overline{3}}{5}=\frac{1}{15} \mathrm{~s}
$$

Finally, $\quad i(t)=i(\infty)+[i(0)-i(\infty)] e^{-t / \tau}=2+(5-2) e^{-15 t}=2+3 e^{-15 t} \quad \mathrm{~A}, t>0$

Example 7.8. At $t=0$, switch 1 in Fig. is closed, and switch 2 is closed 4 s later (time delay).
Find $i(t)$ for $t>0$. Calculate i for $t=2 \mathrm{~s}$ and $t=5{ }^{\circ}$

Solution

We need to consider the three time intervals $t \leq 0,0 \leq t \leq 4$, and $t \geq 4$ separately.
For $t<\mathbf{0}$, switches S1 and S2 are open so that $i=0: \quad i\left(0^{-}\right)=i(0)=i\left(0^{+}\right)=0$

For $0 \leq t \leq 4$, S1 is closed and S 2 is still open, so that the 4 - and $6-\Omega$ resistors are in series.

Hence, $\quad i(\infty)=\frac{40}{4+6}=10 \mathrm{~A}, R_{T h}=4+6=10 \Omega, \tau=\frac{L}{R_{T h}}=\frac{5}{10}=\frac{1}{5} \mathrm{~s}$

Thus,

$$
i(t)=i(\infty)+[i(0)-i(\infty)] e^{-t / \tau}=4+(0-4) e^{-2 t}=4\left(1-e^{-2 t}\right) \mathrm{A}, 0 \leq t \leq 4
$$

For $t \geq 4$, S2 is closed (S 1 is still closed); the $10-\mathrm{V}$ voltage source is connected, and the circuit changes. This sudden change does not affect the inductor current because the current cannot change abruptly (مفاجي). Thus, the initial current is

$$
\left.i(t)\right|_{t=4}=i(4)=i\left(4^{-}\right)=4\left(1-e^{-8}\right) \simeq 4 \mathrm{~A}
$$

To find $i(\infty)$, let v be the voltage at node P in Fig. Using KCL,

$$
\frac{40-v}{4}+\frac{10-v}{2}=\frac{v}{6} \Rightarrow v=\frac{180}{11} \mathrm{~V}, \quad i(\infty)=\frac{V_{s}}{R}=\frac{v}{6}=2.727 \mathrm{~A}
$$

The Thevenin resistance at the inductor terminals is

$$
R_{\mathrm{Th}}=(4 \| 2)+6=\frac{22}{3} \Omega \Rightarrow \tau=\frac{L}{R_{\mathrm{Th}}}=\frac{5}{R_{\mathrm{Th}}}=\frac{15}{22} \mathrm{~s}
$$

Hence,

$$
i(t)=i(\infty)+\left.\left[i\left(t_{0}\right)-i(\infty)\right] e^{-\left(t-t_{0}\right) / \tau}\right|_{t_{0}=4}=2.727+[4-2.727] e^{-(t-4) / \tau}, \quad \tau=\frac{15}{22}
$$

$$
=2.727+1.273 e^{-1.4667(t-4)}, \quad t \geq 4
$$

Finally,

$$
i(t)=\left\{\begin{array}{lc}
0, & t \leq 0 \\
4\left(1-e^{-2 t}\right), & 0 \leq t \leq 4 \\
2.727+1.273 e^{-1.4667(t-4)}, & t \geq 4
\end{array}\right.
$$

The endl off chapter 7

